
PARALLEL TIME INTEGRATION WITH MULTIGRID∗

R. D. FALGOUT† , S. FRIEDHOFF‡ , TZ. V. KOLEV† ,

S. P. MACLACHLAN§ , AND J. B. SCHRODER†

Abstract. We consider optimal-scaling multigrid solvers for the linear systems that arise from
the discretization of problems with evolutionary behavior. Typically, solution algorithms for evolu-
tion equations are based on a time-marching approach, solving sequentially for one time step after the
other. Parallelism in these traditional time-integration techniques is limited to spatial parallelism.
However, current trends in computer architectures are leading towards systems with more, but not
faster, processors. Therefore, faster compute speeds must come from greater parallelism. One ap-
proach to achieve parallelism in time is with multigrid, but extending classical multigrid methods
for elliptic operators to this setting is not straightforward. In this paper, we present a non-intrusive,
optimal-scaling time-parallel method based on multigrid reduction (MGR). We demonstrate optimal-
ity of our multigrid-reduction-in-time algorithm (MGRIT) for solving diffusion equations in two and
three space dimensions in numerical experiments. Furthermore, through both parallel performance
models and actual parallel numerical results, we show that we can achieve significant speedup in
comparison to sequential time marching on modern architectures.

Key words. parabolic problems, reduction-based multigrid, multigrid-in-time, parareal

AMS subject classifications. 65F10, 65M22, 65M55

1. Introduction. One of the major challenges facing the computational science
community with future architectures is that faster compute speeds must come from
increased concurrency, since clock speeds are no longer increasing but core counts are
going up sharply. As a consequence, traditional time marching is becoming a huge
sequential bottleneck in time integration simulations in the following way: improving
simulation accuracy by scaling up the spatial resolution requires a similar (or greater)
increase in the temporal resolution, which is also required to maintain stability in
explicit methods. As a result, numerical time integration involves many more time
steps leading to long overall compute times, since parallelizing only in space limits
concurrency. Solving for multiple time steps in parallel and, therefore, increasing
concurrency would remove this time integration bottleneck.

Because time is sequential in nature, the idea of simultaneously solving for mul-
tiple time steps is not intuitive. Yet it is possible, with work on this topic going back
to as early as 1964 [33]. However, most research on this subject has been done within
the past 30 years including [2, 7–10, 14–22, 25, 28, 31, 32, 38, 40–44]. One approach to
achieve parallelism in time is with multigrid methods. The parareal in time method,
introduced by Lions, Maday, and Turinici in [25], can be interpreted as a two-level
multigrid method [16], even though the leading idea came from a spatial domain de-
composition approach. The algorithm is optimal, but concurrency is limited since
the coarse-grid solve is still sequential. Considering true multilevel (not two-level)
schemes, only a few methods exhibit full multigrid optimality and concurrency such

∗This work performed under the auspices of the U.S. Department of Energy by Lawrence Liver-
more National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-645325). The work of
SF and SM was partially supported by the National Science Foundation, under grant DMS-1015370.

†Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P. O. Box
808, L-561, Livermore, CA 94551. email: {rfalgout, tzanio, schroder2}@llnl.gov

‡Department of Computer Science, KU Leuven, Celestijnenlaan 200a - box 2402, 3001 Leuven,
Belgium. email: stephanie.friedhoff@alumni.tufts.edu

§Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s,
NL, Canada. email: smaclachlan@mun.ca

1

2 R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder

as [21,42,43], and most are designed for specific problems or discretizations. Further-
more, these methods are full space-time algorithms, whereas our algorithm employs a
non-intrusive semi-coarsening strategy using coarsening only in the time dimension.

Classical multigrid methods rely on multiscale representations in space, arising
naturally by decomposing a function into a hierarchy of frequencies from global smooth
modes to local oscillations. These approaches do not extend to evolutionary variables
in a straightforward manner, because of the fundamentally local structure of the
evolution. There are two approaches for extending classical multigrid methods to
include the time dimension: multigrid only in time and space-time multigrid. In this
paper, we present a multigrid-reduction-in-time algorithm (MGRIT) that is based on
multigrid reduction (MGR) techniques [36,37]. The advantage of this approach is that
it is easily integrated into existing codes, because it only requires a routine to integrate
from one time to the next with some adjustable time step; i.e., our MGRIT algorithm
simply calls an existing time-stepping routine. However, to achieve the full benefit of
computing multiple time steps at once, space-time multigrid methods, where time is
simply another dimension in the grid, have to be considered. This approach is more
intrusive on existing codes and is a separate research topic not explored here.

It is important to note that the goal of adding parallelism to time integration
is fundamentally different from that which motivates spatial multigrid. When using
a scalable solver for each time-step, classical time-stepping is already an algorithmi-
cally optimal process, with best possible complexity. Instead, we aim to develop an
approach that retains optimal algorithmic scaling, but with a much larger constant
factor. By distributing this work over more processors than the increased factor, we
aim to achieve speedup. As we are, in effect, accepting added computational work for
added parallelism, the speedups achieved are modest in comparison to those seen for
comparing optimal spatial solvers, such as multigrid, to sub-optimal techniques, such
as LU factorization. Nonetheless, such speedups are important, as they allow us to
make better use of parallel resources than can be achieved by spatial parallelism with
sequential time-stepping.

This paper is organized as follows. In §2, ideas of reduction-based multigrid meth-
ods are reviewed and applied to time integration resulting in the MGRIT algorithm.
In §3, we describe the parabolic model problem for our numerical experiments and
demonstrate optimality of MGRIT for solving this model problem. Section 4 starts
with weak scaling studies emphasizing optimal choices of MGRIT components for
best overall time to solution as well as for robustness, followed by strong scaling stud-
ies comparing MGRIT with sequential time stepping. Finally, in §5, we draw some
conclusions and discuss future work.

2. Multigrid in time based on MGR. Considering the connection of time
integration methods to the solution of lower block triangular linear systems of equa-
tions allows a connection to reduction-based multigrid methods that is crucial for
our optimal-scaling, time-parallel method. In §2.1, we consider this correspondence,
which is the basis of our description of the parareal algorithm in §2.2. Note that our
presentation of the parareal algorithm as a standard residual correction scheme is not
typical (though known [28]) but it allows us to show in §2.3 how the method can be
interpreted as a two-level MGR scheme, corresponding to a two-level variant of the
MGRIT algorithm that we describe in §2.4.

Parallel time integration with multigrid 3

2.1. Connection to linear systems. We consider a system of ordinary differ-
ential equations (ODEs) of the form

(2.1) u′(t) = f(t,u(t)), u(0) = u0, t ∈ [0, T],
such as in a method of lines approximation of a parabolic PDE. Let ti = iδt, i =
0,1, . . . ,Nt, be a temporal mesh with constant spacing δt = T /Nt, and, for i = 1, . . . ,Nt,
let ui be an approximation to u(ti) and u0 = u(0). Then, a general one-step time
discretization method for (2.1) can be written as

(2.2)
u0 = u(0)
ui = Φi(ui−1) + gi, i = 1,2, . . . ,Nt.

In the case of a linear function f , the function Φi(⋅), corresponds to a matrix-vector
product. For simplicity, we consider a time-independent discretization, thus, func-
tion Φi(⋅) corresponds to a matrix-vector product with a fixed matrix denoted by
Φ, Φi(ui−1) = Φui−1; specific examples of Φ will be given in §3.1. Then, the time
discretization method (2.2) is equivalent to the linear system of equations

(2.3) Au ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I

−Φ I

⋱ ⋱

−Φ I

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u0

u1

⋮

uNt

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

g0

g1

⋮

gNt

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≡ g,

where g0 = u(0). Note that traditional time marching corresponds to a block forward-
solve of this system, which is not directly parallelizable. Considering the lower block
bidiagonal structure, we could apply cyclic reduction, a parallel direct factorization
method that can equivalently be viewed as a multigrid method with a block smoother
(called F -relaxation) and a Petrov-Galerkin coarse-grid operator that converges in
one V -cycle. However, although cyclic reduction is optimal for scalar systems, for
(2.3), it requires products of spatial blocks, the Φ matrices, that produce fill-in in
the spatial dimension, yielding a method that is overall non-optimal. Nonetheless,
the cyclic-reduction viewpoint can be useful in developing truly optimal and paral-
lelizable methods. In fact, there are many spatial multigrid methods that have been
designed from a similar reduction viewpoint [4, 5, 12, 23, 26, 35–37], replacing interpo-
lation and/or the Petrov-Galerkin coarse-grid operator with suitable approximations.
Using this perspective for the time dimension allows us to design an optimal-scaling
time-parallel method. Before we pursue this approach, we first describe how parareal
can be viewed as a standard residual correction scheme, laying the foundation of our
interpretation of parareal as a two-level reduction-based multigrid method, considered
in §2.3. The connection to reduction-based multigrid methods is crucial to achieve
optimality when generalizing the two-level algorithm to multiple levels.

2.2. Parareal. One interpretation of parareal is to solve the system (2.3) iter-
atively, instead of with a direct method, by introducing a preconditioner on a coarse
temporal mesh. Therefore, let Tj = j∆T, j = 0,1, . . . ,Nt/m, be a coarse temporal
mesh with constant spacing ∆T =mδt, where m is a positive integer (see Figure 1).

It is easy to verify that the solution, u, of (2.3) at mesh points i = jm, j =
0,1, . . . ,Nt/m, satisfies the coarse system of equations

(2.4) A∆u∆ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I

−Φm I

⋱ ⋱

−Φm I

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u∆,0

u∆,1

⋮

u∆,Nt/m

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= RΦg ≡ g∆,

4 R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder

t0 t1 t2 t3 ⋯ tm tNt

T0 T1 ⋯

δt

∆T =mδt

Fig. 1: Uniformly-spaced fine and coarse time discretization meshes.

where u∆,j = ujm and RΦ is the rectangular restriction operator

(2.5) RΦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I

Φm−1
⋯ Φ I

⋱

Φm−1
⋯ Φ I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The parareal algorithm solves this coarse system iteratively, then computes the re-
maining fine values in parallel using (2.2) on each interval (tjm, tjm+m−1). To solve
the coarse system (2.4), parareal uses the simple residual correction scheme

(2.6) uk+1
∆ = uk

∆ +B
−1
∆ (g∆ −A∆u

k
∆),

where B∆ is some coarse-scale time discretization of (2.1) (the analog of A on the
coarse mesh),

B∆ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I

−Φ∆ I

⋱ ⋱

−Φ∆ I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The action of A∆ is computed in parallel, but B−1∆ is computed sequentially, typically
on a single processor. The residual correction (2.6) is usually presented as the following
equivalent update step in the parareal literature

(2.7) uk+1
∆,j+1 = Φ∆u

k+1
∆,j +Φ

muk
∆,j −Φ∆u

k
∆,j + g∆,j, j = 1,2, . . . ,

with uk
∆,0 = g∆,0, where Φ and Φ∆ play the roles of the so-called fine and coarse

propagators.

2.3. Parareal as a two-level multigrid reduction method. The key feature
of parareal is the use of a coarse-scale time discretization that approximates the fine-
scale evolution over the coarse-scale subspace. Since this idea is similar to the idea
of MGR, it is not difficult to see how the parareal algorithm can be interpreted as a
two-level MGR method. Therefore, let us partition the temporal mesh into C-points,
given by the set of coarse time-scale points, {i = jm}, and F -points. Reordering the
fine-grid operator, A, by F -points first and using the subscripts c and f to indicate
the two sets of points, we consider the following well-known matrix decomposition,
valid for any invertible matrix A with invertible submatrix Aff ,

(2.8) A = [Aff Afc

Acf Acc
] = [If 0

AcfA
−1
ff Ic

] [Aff 0
0 Acc −AcfA

−1
ffAfc

] [If A−1ffAfc

0 Ic
] ,

where Ic and If are identity operators. We define the operators R, P (known as
“ideal” restriction and interpolation since they define a Schur complement coarse
grid), and S by

(2.9) R = [−AcfA
−1
ff Ic] , P = [−A−1ffAfc

Ic
] , S = [If

0
] .

Parallel time integration with multigrid 5

Then, since Aff = STAS and Acc − AcfA
−1
ffAfc = RAP , it is straightforward to see

from (2.8) that

A−1 = P (RAP)−1R + S (STAS)−1 ST ,

and, thus,

0 = I −A−1A = I −P (RAP)−1RA − S (STAS)−1 STA(2.10)

= (I −P (RAP)−1RA)(I − S(STAS)−1STA),(2.11)

where equivalence occurs since RAS = 0. We call (2.10) the additive identity and
(2.11) the multiplicative identity. The multiplicative identity (2.11) defines the error
propagator of an exact two-level multigrid method, with the first term correspond-
ing to the error propagator of coarse-grid correction using the ideal Petrov-Galerkin
coarse-grid operator (the Schur complement), RAP , and the second term being the
error propagator of F -relaxation. To produce an iterative multigrid method, MGR
methods [12, 23, 26, 35–37], for example, replace ideal interpolation and/or the ideal
Petrov-Galerkin coarse-grid operator with various approximations and potentially add
relaxation. Other methods in the literature that are closely related to the additive
identity (2.10), such as ARMS [24,39] and multigraph [4, 5], often use ILU factoriza-
tions to approximate Aff and the Schur complement. Comparisons of the two types
of algebraic multilevel methods have been considered in [27, 29, 30, 34]. Furthermore,
as discussed in [29, 30], the order of coarse-grid correction and F -relaxation in (2.11)
can be reversed although we do not consider this here.

The parareal algorithm does something similar to MGR. Considering (2.6) at
original time scale and defining RI = [0 Ic] to be the coarse-scale injection operator,

the error propagator for parareal is given by P (I − B−1∆ A∆)RI . With the fine-grid
operator, A, given by (2.3), the restriction operator, R, in (2.9) is the same as RΦ

in (2.5). Furthermore, the parareal coarse-grid operator, A∆, is equal to the Schur
complement and thus, satisfies the Petrov-Galerkin condition, A∆ = RAP . Hence, the
error propagator for parareal is equal to (I−PB−1∆ RA)PRI which, using the operator
S defined in (2.9), can be written as

(2.12) (I −PB−1∆ RA)(I − S(STAS)−1STA).
Thus, the error propagator for the parareal algorithm is given by (2.11), with A∆

replaced by the coarse-scale time discretization, B∆. To save computational work,
we can replace R with RI since RAP = RIAP . Figure 2 shows schematic views
of the actions of F - and C-relaxation for coarsening by a factor of four (m = 4).
Furthermore, we note that ideal interpolation, P , corresponds to F -relaxation with a
zero right-hand side.

g g g g g g

ΦΦΦΦΦΦ

(a) F -relaxation = time stepping in
coarse time interval

g g g

ΦΦ

(b) C-relaxation

Fig. 2: Schematic view of the actions of (a) F -relaxation and (b) C-relaxation for
coarsening by a factor of four; ○ represent F -points and ∎ represent C-points.

6 R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder

Another two-level multigrid interpretation of parareal was given by Gander and
Vandewalle in [16]. This interpretation is described in the full approximation storage
(also called the full approximation scheme, FAS) framework [6] for the full nonlinear
setting of (2.2) and is based on a different choice of operators. For the linear case,
it is straightforward to show that the resulting two-level methods are the same. The
advantage of the operator choice of [16] is its simplicity, but the advantage of our
operator choice is that the multigrid components are more typical and, thus, allow
us to extend the two-level method to an optimal multilevel algorithm. Furthermore,
generalizing our MGR ideas to the nonlinear setting is straightforward in the FAS
framework.

2.4. The optimal-scaling multilevel algorithm. Parareal is normally con-
sidered as a two-level method. The main drawback to this approach is that it requires
a sequential forward solve of the coarse-grid system. For problems that involve a large
number of time steps, the coarse-grid problem is still large and, thus, solving it in a
sequential manner is a bottleneck analogous to the fine-grid forward solve. Results
in §3.3 show the obvious generalization to a multilevel parareal algorithm does not
yield scalable performance for V -cycles. Thus, we use the MGR viewpoint to develop
an optimal multilevel algorithm. Previous research on MGR for developing optimal
spatial multilevel methods [12, 23, 26, 35–37] motivates using the same coarse-grid
operator, B∆, as in the two-level parareal method, but replacing F -relaxation with
FCF -relaxation, and then applying the resulting method recursively. More precisely,
we keep the first term in the two-level method (2.12), I−PB−1∆ RA, and replace the sec-
ond term, I −S(STAS)−1STA, corresponding to the error propagator of F -relaxation
with the product

(I − S(STAS)−1STA)(I −RT
I (RIAR

T
I)−1RIA)(I − S(STAS)−1STA),

corresponding to the error propagator of FCF -relaxation. With the error propagator
of F -relaxation equal to PRI , we can write the error propagator of FCF -relaxation
as

P (I −A−1cc (Acc −AcfA
−1
ffAfc))RI = P (I −A∆)RI ,

where equivalence occurs since Acc = I. Thus, FCF -relaxation corresponds to Ja-
cobi smoothing on the coarse time grid with the true Schur complement coarse-grid
operator, A∆ = RAP .

To describe the MGRIT algorithm, we consider a hierarchy of time discretization
meshes, Ωl, l = 0,1, . . . , L = logm(Nt), with constant spacing δt on level 0, mδt on
level 1, etc., for a positive coarsening factor, m. Let Alu

(l) = g(l) be the linear system
of equations on level l = 0,1, . . . , L, where Al is the time discretization on the mesh
Ωl, characterized by the matrix Φl. For each level, l, we decompose the matrix Al

into F - and C-points and define the interpolation operator, P , as in (2.9). Then, the
MGRIT V -cycle algorithm for solving (2.1) can be written as follows:

Parallel time integration with multigrid 7

MGRIT(l)
if l is the coarsest level, L

● Solve coarse-grid system ALu
(L) = g(L).

else
● Relax on Alu

(l) = g(l) using FCF -relaxation.
● Compute and restrict residual using injection,
g(l+1) = RI(g(l) −Alu

(l)).
● Solve on next level: MGRIT(l + 1).
● Correct using “ideal interpolation”, u(l) ← u(l) +Pu(l+1).

end

Note that as in the spatial MGR context [37], W - and F -cycle versions of the
MGRIT algorithm can be defined. Assuming exact arithmetic, one iteration of F -
relaxation computes the exact solution at all F -points in the first coarse-scale time
interval, (T0, T1), whereas one iteration of FCF -relaxation computes the exact solu-
tion at all F -points in the first two coarse-scale time intervals, (T0, T1) and (T1, T2),
as well as at T1 corresponding to the first C-point. Each additional iteration of F -
relaxation or FCF -relaxation computes the exact solution at all points of one or
two additional coarse-scale time interval(s), respectively. Thus, parareal and MGRIT
solve for the exact solution in Nt/m or Nt/(2m) iterations, respectively, correspond-
ing to the number of points on the first coarse grid or to half the number of points on
the first coarse grid. This is an interesting property of the two algorithms; however,
in practice, the fact that they converge to some error tolerance in O(1) iterations is
more relevant.

3. Numerical results. To test the MGRIT approach developed in §2.4, we
consider a parabolic model problem, the diffusion equation in d space dimensions. In
§3.1, we describe implicit and explicit discretizations of this model problem and their
correspondence to Φ in (2.3), followed by a brief description about implementation
details in §3.2. Optimality of MGRIT for solving the model problem in two space
dimensions with implicit and explicit time discretization is then demonstrated in §3.3.

3.1. The parabolic model problem. We consider the diffusion equation in d

space dimensions,

(3.1) ut − κ∆u = b(x, t), κ > 0, x ∈ Ω = [0, π]d, t ∈ [0, T],
subject to an initial condition and homogeneous Dirichlet boundary conditions,

u(x,0) = u0(x), x ∈ Ω(3.2)

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T].(3.3)

We transform our model problem to a system of ODEs of the form (2.1) by
using central finite differences for discretizing the spatial derivatives and first-order
methods for the time derivative. In the following, we consider only the case d = 2; the
operators for d = 1 and d = 3 are defined analogously. Let (xj = j∆x, yk = k∆y, ti =
iδt), j = 0,1, . . . ,Nx, k = 0,1, . . . ,Ny, i = 0,1, . . . ,Nt, be a uniform space-time mesh
with spacing ∆x = π/Nx, ∆y = π/Ny, and δt = T /Nt, respectively. Furthermore, for
i = 0,1, . . . ,Nt, let ui be an approximation to u(x, ti) with u0 = u0(x) using the initial
condition, (3.2). If we use backward Euler for the time discretization, we obtain

(I + δtM)ui − δtbi = ui−1, i = 1,2, . . . ,Nt,

8 R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder

defining a one-step method of the form (2.2) with Φ = (I + δtM)−1 and gi = (I +
δtM)−1δtbi for i = 1,2, . . . ,Nt, where M is the usual central finite-difference dis-
cretization of −κ∆u,

M =

⎡⎢⎢⎢⎢⎢⎣
−ay

−ax 2 (ax + ay) −ax
−ay

⎤⎥⎥⎥⎥⎥⎦
with ax =

κ

(∆x)2 , ay =
κ

(∆y)2 .

If we use forward Euler for the time discretization, then Φ = I − δtM and gi = δtbi−1

for i = 1,2, . . . ,Nt. Thus, for our simple model problem using an implicit time dis-
cretization, the time integrator Φ corresponds to a spatial solve, whereas it coincides
with a matrix-vector product in the explicit case. We use the same discretization
technique (with adjusted time step size) to define the discrete operators on all levels.

In the following, we primarily report on tests of solving the model problem on
the space-time domain [0, π]d × [0, T] with a zero right-hand side, κ = 1, and subject
to the initial condition u(x, y,0) = sin(x) sin(y), 0 ≤ x, y ≤ π, in the case that d = 2
or u(x, y, z,0) = sin(x) sin(y) sin(z), 0 ≤ x, y, z ≤ π, if d = 3. Choosing a zero right-
hand side allows us to easily verify that MGRIT computes a good approximation
to the true solution. However, we emphasize that a non-zero right-hand side does
not change our algorithm, since it only defines the right-hand side, g, of the linear
system (2.3). When noted, we also report results for the same problem in two space
dimensions, with b(x, t) = − sin(x) sin(y)(sin(t) − 2 cos(t)). On the finest grid, the
initial condition is used as the initial guess for t = 0, and a random initial guess for
all other times. Choosing a random initial guess for all times t > 0 corresponds to not
using any knowledge of the right-hand side that could affect convergence. However,
in practice, a random initial guess is not recommended.

Notation. We present results for a variety of discretizations of the model problem
in two and three space dimensions. To facilitate readability, in general, only the
space-time grid size is specified in the caption of tables and figures, and the following
labels are used

Implicit2D(T = ⋅) model problem in two space dimensions with backward Euler
time discretization

Implicit2D(T = ⋅)-F model problem in two space dimensions with non-zero forcing
term, with backward Euler time discretization

Implicit3D(T = ⋅) model problem in three space dimensions with backward Euler
time discretization

Explicit2D(T = ⋅) model problem in two space dimensions with forward Euler time
discretization

Note that the space-time grid size and the final time, T , of the time inter-
val uniquely define the step sizes of the discretization using the relationships ∆x =
π/Nx, ∆y = π/Ny, ∆z = π/Nz, and δt = T /Nt.

3.2. Implementation details. We have implemented the MGRIT algorithm
described in §2.4 in parallel using C and Message Passing Interface (MPI). The code
decomposes the original temporal grid such that each processor owns a time interval of
roughly the same size, and coarse grids are distributed in the usual multigrid fashion
according to their parent fine grids. As a result, the first (likewise, last) point on
a processor on any given level could be an F -point or a C-point, and a processor
may not own any points at all on some coarse levels. The code attempts to overlap
communication and computation by computing on the rightmost F -interval first and

Parallel time integration with multigrid 9

sending information downstream as soon as possible. Also, to save on memory, only
solution values at C-points are stored.

Since MGRIT is a non-intrusive approach, the time integrator Φ in MGRIT is
essentially the same as in an algorithm with sequential time stepping. We have imple-
mented Φ for both time integration approaches in parallel using C and the hypre [1]
package. In the implicit time discretization case, the spatial systems are solved us-
ing the hypre solver PFMG [3, 11]. PFMG is a parallel alternating semicoarsening
multigrid V -cycle solver that automatically determines the direction of semicoarsen-
ing minimizing problem anisotropies. For our experiments, we use V (1,1)-cycles with
red-black Gauss-Seidel relaxation, full coarsening (skip = 1), and coarse-grid operators
formed algebraically by the non-Galerkin process described in [3]. The convergence
tolerance is based on the relative residual and chosen to be 10−9 unless otherwise
specified.

3.3. Optimality of MGRIT. To demonstrate optimality of MGRIT, we con-
sider iteration counts for solving the model problem in two space dimensions with
implicit and explicit time discretizations. The iteration counts are based on achiev-
ing an absolute space-time residual norm of less than 10−9, measured in the discrete
L2-norm. For the implicit case, we perform domain-refinement studies commonly
used for multigrid methods, whereas, for the explicit case, studies focus on the CFL
condition.

3.3.1. Implicit time integration schemes. We consider a domain-refinement
study for two-level and true multilevel, L = log2(Nt), variants of MGRIT V - and
F -cycle algorithms with factor-2 coarsening and various relaxation schemes. For
this purpose, we fix a space-time domain and simultaneously scale up the spatial
and temporal resolutions. More precisely, the time step on the finest grid is cho-
sen to be δt = (∆x)2 = (∆y)2, and the time step on each coarse grid is given by
2l−1δt, l > 0. Hence, we quadruple the number of points in time when doubling the
number of points in space. The following three relaxation schemes are considered:
F -relaxation, FCF -relaxation, and F -FCF -relaxation defined as F -relaxation on the
finest grid and FCF -relaxation on all other levels, l > 0. F -relaxation corresponds
to the parareal method and the obvious generalization to a multilevel parareal algo-
rithm, FCF -relaxation is motivated by the MGR viewpoint and F -FCF -relaxation
is chosen for efficiency reasons. Both V - and F -cycle variants are considered, knowing
added coarse-grid work in an F -cycle better approximates the two-level method.

Table 1 shows that for MGRIT V - and F -cycles using FCF or F -FCF -relaxation,
the iteration counts appear to be bounded independently of the problem size. While
the same holds true for two-level MGRIT with F -relaxation, i.e., the parareal method,
iteration counts increase for multilevel V -cycles, and F -cycles are necessary to achieve
good scaling. Thus, the obvious generalization of parareal to multiple levels does not
produce an optimal algorithm. Put another way, the additional full FC relaxation
sweep on the fine grid is necessary to achieve optimality in the multilevel V -cycle
algorithm. While F -cycles maintain optimal algorithmic scaling, they require more
communication than V -cycles do and, as such, often lead to poorer overall parallel
performance, as will be seen in §4.1.

Tests also indicate that the above results are largely independent of the coarsening
factor, i.e., the number of iterations does not change significantly when coarsening
by larger factors. However, there is another parallel performance tradeoff with this
apparent reduction in work that we also discuss in §4.1.

10 R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder

N
2
x
×Nt = (24)2× (25)2× (26)2× (27)2× (28)2×

25 27 29 211 213

FCF -relax. two-level 7 8 8 7 7

V -cycle 7 9 9 10 10

F -cycle 7 8 7 7 7

F -FCF -relax. V -cycle 10 11 11 11 11

F -cycle 10 11 10 10 10

F -relax. two-level 10 11 10 10 10

V -cycle 12 17 24 29 31

F -cycle 10 10 10 10 10

Table 1: Number of iterations for solving Implicit2D(T = π2/8) on (Nx+1)2×(Nt+1)
space-time grids using two-level MGRIT schemes, MGRIT V - and F -cycles with
factor-2 coarsening and various relaxation schemes.

c = 1 2 4 8 16 32 64

FCF -relax. two-level 7 7 8 8 8 7 7

V -cycle 10 10 9 9 9 8 7

F -cycle 7 7 7 8 8 7 7

F -FCF -relax. V -cycle 11 11 11 11 11 11 10

F -cycle 10 10 10 10 11 11 10

F -relax. two-level 10 10 10 10 11 11 10

F -cycle 10 10 10 10 10 10 10

Table 2: Number of two-level and multilevel MGRIT iterations for solving
Implicit2D(T = π2/8) for different ratios c = δt/(∆x)2 with ∆x = π/128 fixed, coars-
ening by a factor of 2 and various relaxation schemes.

The choice of δt = (∆x)2 arises from the differences in accuracy of the spatial
and temporal discretizations. In order to achieve balanced accuracy, it is necessary
to take δt = c(∆x)2 for some moderate constant c. In Table 2, we look at the effects
of the time-step size on iteration counts. We consider the space-time domain [0, π]2 ×[0, π2/8], fixed spatial mesh sizes of ∆x = ∆y = π/128, and increase the time-step
size with the ratio c = δt/(∆x)2. The results show that iteration counts are largely
independent of the time-step size.

3.3.2. Accuracy of spatial solves. Using an implicit time discretization
method, the function Φ(⋅) corresponds to a spatial solve. In particular, for our model
problem, Φ = (I + δtM)−1. In practice, however, these spatial problems are solved
with an iterative method such as multigrid. As a consequence, instead of solving the
linear system of equations (2.3), we actually solve

(3.4) Âu ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I

−Φ̂ I

⋱ ⋱

−Φ̂ I

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u0

u1

⋮

uNt

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

g0

g1

⋮

gNt

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≡ g,

where Φ̂ ≈ Φ and g0 = u(0).
Considering an iterative method for the spatial solves at each time step raises the

question of how to choose a good initial guess for these solves. In traditional time
marching, typically the solution from the previous time step is used. Note that this is

Parallel time integration with multigrid 11

a good choice if the solution is smooth in time. MGRIT solves the linear system (3.4)
iteratively and thus, each MGRIT iteration computes a better approximation of the
solution at each time step. Therefore, a good initial guess for the spatial solve at a
particular time step is the current approximation of the solution at this time step, i.e.,
the solution at the time step obtained in the previous MGRIT iteration. As discussed
in §3.2, in order to achieve some degree of efficient memory use, our implementation
stores only the solution at the C-points of each grid. Thus, we cannot use the current
approximation of the solution as the initial guess for the spatial solve.

Similarly to time-stepping algorithms, we use the solution from the previous time
step of the current MGRIT iteration as the initial guess. This choice is optimal with
respect to the constraint of efficient memory use. However, when not using the current
approximation of the solution for the spatial solves, the accuracy of the spatial solves
becomes crucial, particularly for optimizing parallel performance. More precisely,
choosing an approximation Φ̂ ≈ Φ raises two questions: first, should we use the same
approximation for all MGRIT iterations? And second, how accurately should we solve
the spatial problems on coarse time grids? To answer these questions, we consider the
effect on iteration counts for a heuristic choice for the accuracy of the approximation.
Since our goal is to reduce overall compute time, in addition to considering iteration
counts, we also look at runtimes in a weak scaling study in §4.1.

In general, there are two simple strategies for choosing the accuracy of the spatial
solves: a stopping tolerance-based accuracy, i.e., solving the spatial problems to a
given stopping tolerance, and a fixed iteration-based accuracy, i.e., using a fixed num-
ber of iterations to solve the spatial problems. We choose a combination of these two
strategies: on the finest grid, we use a stopping tolerance-based accuracy and on all
other levels, l > 0, we use a fixed iteration-based accuracy. With this choice, we limit
computational work on the coarse grids, and we approximate Φ on the finest grid as is
typically done in time marching schemes. Furthermore, to save some computational
work on the finest grid, we start with a loose stopping tolerance for the spatial solves
and tighten it as we converge in time. More precisely, our choice for the stopping
tolerance, tolx, for the spatial solves on the finest grid is based on the norm of the
residual of the previous MGRIT iteration, acct = ∥rk−1∥, as follows: we pick a loose
and a tight spatial stopping tolerance,

tol(loose)x = 10−loose and tol(tight)x = 10−tight,

where tol(tight)x is the same stopping tolerance we would use for time stepping. Fur-

thermore, we define an accuracy, acc
(close)
t = 10−close, characterizing “being close” to

converging in time. If acct ≤ acc
(close)
t , tol(tight)x is used as the stopping tolerance

for the spatial solves. Note that this ensures that we solve the same linear system

that we solve with time stepping. If acct > acc
(close)
t , we use a linear function of the

logarithm of the residual norm to determine the logarithm of the stopping tolerance
for the spatial solves, as depicted in Figure 3.

Note that changing the tolerance of the spatial solves changes the approximation,
Φ̂ and, thus, the problem that we consider. Large changes in the tolerance might
result in an increase of the residual norm, acct. In that case, instead of loosening the
tolerance again, the same tolerance of the spatial solves is kept until the residual norm
decreases enough such that the tolerance is tightened further. Put another way, we
never decrease the accuracy of spatial solves from one MGRIT iteration to the next.

To demonstrate that MGRIT computes a good approximation of the true discrete
solution when using the heuristic choice for the accuracy of the spatial solves, we

12 R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder

− log(acct)stopclose

− log(tolx)

loose

tight

Fig. 3: Defining the stopping tolerance for the spatial solves on the finest grid, tolx, as
a function of the norm of the residual of the previous MGRIT iteration, acct = ∥rk−1∥.
compare the solution obtained by time stepping with the solution obtained by several
MGRIT variants using a stopping tolerance-based accuracy with loose = 2 and tight =
9 on the finest grid and two V -cycles on all coarse grids. We look at the norm of
the error to the true discrete solution for the problem with non-zero forcing. More
precisely, let s denote the time integration scheme used to solve the discrete space-
time problem, i.e., s is either time stepping or an MGRIT variant. Furthermore, for

each time step ti, let es = ∣∣e(s)i ∣∣ denote the norm of the error to the true discrete

solution using the scheme s, and let emin = mins ∣∣e(s)i ∣∣ be the minimum of these
norms over all time integration schemes. The left-hand side of Figure 4 plots es for
time-stepping and four MGRIT variants. The norm of the error for all schemes is
roughly of the same size, independently of the time integration scheme used for the
numerical computation, although some small added accuracy is seen for this problem
with MGRIT V-cycles with F − FCF relaxation. At the right of Figure 4, we plot
es − emin for each scheme, where emin is computed without including the F − FCF

relaxation results. Here, we see that there is no inherent advantage or disadvantage for
the MGRIT approaches with this heuristic for accuracy of spatial solves. The solutions
obtained by all MGRIT variants correspond to the solution obtained by time stepping
within some tolerance. We emphasize that only the fact that all schemes compute the
same solution up to some tolerance is important. The scheme with minimum error
can vary from time step to time step and as a result of parameter choices.

In Table 3, we look at the effects of our heuristic choice for the accuracy of the
spatial solves on iteration counts. We consider the same parameters as in Table 1
with the exception that instead of solving all spatial problems to 10−9 accuracy, we
use our heuristic. Compared to Table 1 we see an increase in iteration counts, but the
number of iterations still appears to be bounded independently of the problem size.
While two-level schemes as well as F -cycles perform only a little worse, we observe
some degradation for V -cycles. However, this degradation is not critical, especially
since parallel time-to-solution is more important than iteration counts.

3.3.3. Explicit time integration schemes. For explicit time discretization
schemes, considering parallel time integration is highly relevant because the number
of time steps in these methods is usually quite large. However, stability issues on
coarse grids render the straightforward application of our approach infeasible. One
possibility for circumventing this problem is to use an implicit discretization on coarse
grids. Using this approach in conjunction with aggressive coarsening on the finest grid
to reduce the cost of the implicit coarse solve makes this a worthwhile approach to

Parallel time integration with multigrid 13

0 500 1000 1500 2000
0

2

4

6

8

10

x 10
−6

time step

no
rm

 o
f e

rr
or

V−cycle, FCF
V−cycle, F−FCF
F−cycle, FCF
F−cycle, F
time−stepping

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3
x 10

−8

time step

di
ffe

re
nc

e
to

 m
in

im
um

 e
rr

or

V−cycle, FCF
F−cycle, FCF
F−cycle, F
time−stepping

Fig. 4: Comparison of norms of errors to the true discrete solution of Implicit2D(T =

π2/8)-F on a 1292×2049 space-time grid at each time step, ∣∣e(s)i ∣∣, using different time

integration schemes, s. At left, ∣∣e(s)i ∣∣, and at right, difference between ∣∣e(s)i ∣∣ and the

minimum error norm at each time step over all time integration schemes, mins ∣∣e(s)i ∣∣,
omitting F −FCF results.

N
2
x
×Nt = (24)2× (25)2× (26)2× (27)2× (28)2×

25 27 29 211 213

FCF -relax. two-level 12 12 11 11 12

V -cycle 13 16 16 15 18

F -cycle 12 12 11 11 12

F -FCF -relax. V -cycle 17 17 17 19 17

F -cycle 13 13 14 13 14

F -relax. two-level 13 13 13 13 14

F -cycle 13 13 13 13 14

Table 3: Results similar to those in Table 1, but using a stopping tolerance-based
accuracy for the spatial solves on the finest grid as depicted in Figure 3 (with loose = 2
and tight = 9) and fixed iteration-based accuracy (2 iterations) for spatial solves on
all other levels, l > 0, instead of solving all spatial problems to 10−9 accuracy.

achieve speedup in comparison to traditional time-marching methods. The downside
from a user perspective is that both explicit and implicit time-stepping routines are
needed.

The explicit-implicit approach allows us to avoid stability issues on the coarse
grids, but it raises the question of robustness. To answer this question, we consider
the model problem in two space dimensions with explicit time discretization on the
space-time domain [0, π]2 × [0, π2/8]. For simplicity, we assume that we use the same
spatial mesh size in both dimensions, ∆y = ∆x. Thus, the CFL condition is given
by 0 < δt < (∆x)2/4. Table 4 shows iteration counts for the two-level variant of our
MGRIT algorithm for different CFL numbers, c = δt/(∆x)2, and coarsening factors
2 and 16. Note that since we consider a fixed time interval, we have to decrease the
number of time steps when increasing the time step size with the CFL number. Table
4 shows that iteration counts for the case that δt is away from the CFL limit (small
values of c), are independent of the CFL number. However, as δt approaches the CFL
limit, iteration counts increase, especially for factor-2 coarsening.

The increase in iteration counts as δt approaches the CFL limit results from
properties of the discrete solution. For the discretization considered in our nu-
merical experiments, the discrete solution can be expressed in terms of eigenval-
ues and eigenvectors of the discrete Laplacian. If we denote the eigenvectors and

14 R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder

c = 0.15 0.2 0.22 0.23 0.24 0.245 0.249 0.2499

m = 2 11 11 13 19 37 71 283 472

m = 16 9 9 9 9 9 12 47 65

Table 4: Number of two-level V -cycle MGRIT iterations with FCF -relaxation for
solving Explicit2D(T = π2/8) for different CFL numbers, c = δt/(∆x)2 with ∆x = π/64
fixed, coarsening by a factor of 2 or 16, forward Euler on the fine temporal grid and
backward Euler on the coarse grid.

corresponding eigenvalues of the negative discrete Laplacian, M , by vj,k and λj,k,
j = 1, . . . ,Nx − 1, k = 1, . . . ,Ny − 1, respectively, we can write the initial condition,
u0(x), as a linear combination of the vj,k,

u0(x) =∑
j,k

αj,kvj,k.

The discrete solution at time ti is then given by

ui =∑
j,k

αj,k (1 − δtλj,k)i vj,k.

For modes that are oscillatory in both space dimensions, we have that λj,k ≈ 8/(∆x)2.
If we write the damping factor, (1 − δtλj,k)i, at time ti in terms of the CFL number

c, we obtain (1 − 8c)i. Close to the CFL limit, i. e., c ≈ 0.25, we have 1 − 8c → −1.
Thus, the space-time solution contains a component that is oscillatory in time with an
amplitude that gets damped very slowly in time. As a consequence, as δt approaches
the CFL limit, convergence of MGRIT depends on the number of time steps, Nt,
which controls the magnitude of the oscillations at the end of the time interval. For
large Nt, MGRIT cannot effectively reduce this oscillatory component of the error
since FCF -relaxation is not a good smoother for this component, especially if we
consider small coarsening factors. Furthermore, coarse-grid correction does not help
since oscillatory modes are not visible on the coarse grid. Therefore, close to the CFL
limit sequential time stepping should be used. For MGRIT, we would have to consider
large coarsening factors relative to the number of time steps which limits the amount
of parallelism in relaxation and, thus, the benefits of our approach. However, since
the existence of a component that is oscillatory in time is not physical, this is not a
real restriction for using the MGRIT algorithm. A domain refinement study similar
to that in Table 1 for fixed c (away from the CFL limit) shows that iteration counts
for the multilevel explicit-implicit approach appear to be bounded independently of
the problem size, but a full study of the benefit in a parallel simulation code is still
needed.

4. Parallel results. In this section, we compare the time to solution using
MGRIT to the time to use sequential time stepping. In particular, we are inter-
ested in answering three questions. First, is it beneficial to use MGRIT on modern
architectures? Second, considering the time to solution with both methods as func-
tions of the number of processors, where is the crossover point? And third, what
speedup can we expect from using MGRIT?

Numerical results in this section are, unless otherwise noted, generated on Cab, a
Linux cluster at Lawrence Livermore National Laboratory consisting of 1,296 compute
nodes, with two eight-core 2.6 GHz Intel Xeon processors per node. The nodes are
connected by an InfiniBand QDR interconnect. We also include results for weak

Parallel time integration with multigrid 15

scaling on Vulcan, a Blue Gene/Q system at Lawrence Livermore National Laboratory
consisting of 24,576 nodes, with sixteen 1.6GHz PowerPC A2 cores per node and a
5D Torus interconnect. Since particular choices of various components of the MGRIT
algorithm affect parallel performance, we first aim at optimizing choices for best
overall time to solution, as well as for robustness. In §4.1, we consider the effect
of our heuristic choice for the accuracy of the spatial solves described in §3.3.2 on
time to solution and compare various relaxation schemes for MGRIT V - and F -
cycles. In §4.2, we look at iteration counts and computation times as functions of the
coarsening factor to determine a good coarsening strategy. We then use these results
in Sections 4.3 and 4.4 to choose a set of MGRIT variants for strong scaling studies
and comparison to sequential time stepping. In §4.5 we briefly review a simple parallel
performance model that allows predictions for larger computational scales, followed
by a comparison of MGRIT to sequential time-stepping using this model.

4.1. Optimizing MGRIT cycling. The results in §3.3.2 show that our heuris-
tic choice for the accuracy of the spatial solves preserves optimality but increases
iteration counts slightly compared to solving all spatial problems to high accuracy.
Since we are interested in the best overall time to solution, we look at the effect of
the accuracy of the spatial solves on compute time in a weak scaling study. More
precisely, we fix the domain size and choose δt = (∆x)2 = (∆y)2 as in the domain-
refinement study in §3.3.1. Halving the spatial step size ∆x requires quadrupling the
number of time steps and, thus, for proper weak scaling we increase the number of
processors by factors of 16.

Figure 5 shows weak scaling results for MGRIT V - and F -cycles with factor-2
coarsening and various relaxation schemes. The time curves show that the MGRIT
algorithm scales well for both choices of the accuracy of the spatial solves. Note
that the log-linear scaling of the axes shows a growth in time roughly proportional to
log(P), where P denotes the number of processors. Furthermore, comparing overall
compute times, we see that it is beneficial to use our heuristic choice by as much as
a factor of about two.

1 16 256 4096
0

1

2

3

4

5

6

7

8

processors

tim
e

[s
ec

on
ds

]

V−cycle, FCF
V−cycle, F−FCF
F−cycle, FCF
F−cycle, F

Fig. 5: Time to solve Implicit2D(T = π2/8) using MGRIT V - and F -cycles with
factor-2 coarsening and various relaxation schemes. The problem size per processor
is about (24)2 × 25. Solid lines are results for solving all spatial problems to 10−9

accuracy and dashed lines represent runtimes for using our heuristic choice for the
accuracy of the spatial solves.

16 R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder

4.2. Optimizing MGRIT coarsening. So far, we have only presented results
for factor-2 coarsening. To determine the effect of other coarsening factors on parallel
performance, we consider solving Implicit2D(T = π2/8) on a 1292 × 2049 space-time
grid with the MGRIT V - and F -cycle algorithms using 32 processors for parallelizing
only in time. Note that for this particular problem size and number of processors, the
local temporal problem size on each processor is about 64. Figure 6 shows iteration
counts (dashed lines) and compute times (solid lines) as functions of the coarsening
factor for various MGRIT variants. In all cases, iteration counts are bounded inde-
pendently of the coarsening factor. More precisely, for V -cycles using F -relaxation on
the finest grid and FCF -relaxation on all other levels, l > 0, as well as F -cycles using
FCF - or F -relaxation on all levels, the iteration counts increase slightly, stagnate,
and then decrease. Considering V -cycles with FCF -relaxation on all levels, iteration
counts are non-increasing. One argument for this behavior is that more aggressive
coarsening leads to stronger relaxation, and MGRIT looks more like time stepping.
In particular, using a coarsening factor of 2048, we have two time levels and thus,
considering FCF -relaxation on the fine grid, MGRIT converges in one iteration. For
F -relaxation on the fine grid, it converges in two iterations. Note that with a coars-
ening factor of 2049, all variants converge in exactly one iteration.

2 4 8 16 32 64 128 256 512 1024 2048
0

2

4

6

8

10

12

14

16

coarsening factor

ite
ra

tio
ns

 (
da

sh
ed

)

2 4 8 16 32 64 128 256 512 1024 2048
0

5

10

15

20

25

30

35

40

tim
e

[s
ec

on
ds

]

V−cycle, FCF
V−cycle, F−FCF
F−cycle, FCF
F−cycle, F

Fig. 6: Number of iterations and overall compute time for solving Implicit2D(T =
π2/8) on a 1292 × 2049 space-time grid using MGRIT V - and F -cycles with various
relaxation schemes, 32 processor for parallelizing only in time, all spatial solves to
10−9 accuracy.

Compute time behaves in the opposite manner of iteration counts. Generally,
compute time decreases in the beginning, since MGRIT requires less communication.
At some point, we lose parallelism in relaxation, which causes the time to solution to
increase even though iteration counts decrease. More precisely, when the number of
time levels decreases, which is the case for coarsening factors 4, 8, 16, 64, and 2048,
we generally see a drop in compute time. When the number of levels does not change,
as for coarsening factors 32 and 128 through 1024, we lose parallelism in relaxation
resulting in an increase in compute time.

Summarizing the above results, aggressive coarsening with m > 2 reduces the
cost of coarse-grid solves. However, relaxation is expensive when the number of time

Parallel time integration with multigrid 17

points on each processor is small since, in that case, F -relaxation requires sequential
communication for all processors in a given interval of F -points. A coarsening strategy
that aims to balance these two effects is to use aggressive coarsening in conjunction
with factor-2 coarsening on coarse grids on which the local problem size is small. We
consider weak scaling again to look at the effect of such a coarsening strategy on overall
time to solution in comparison to coarsening strategies with a fixed coarsening factor
on all time levels. For larger coarsening factors to be meaningful, we distribute the
space-time domain such that the local space-time domain on each processor consists
of nx = 2

7 points in each space dimension and nt = 2
8 time points (instead of nx = 2

4

and nt = 2
5 in our first weak scaling study).

Figure 7 shows weak scaling results for MGRIT V -cycles and three different coars-
ening strategies: factor-2 coarsening on all levels, factor-16 coarsening on all levels, and
a combination of factor-16 and factor-2 coarsening. For the latter coarsening strategy,
we used factor-16 coarsening on all levels on which the number of time points on each
processor is 16 or greater, and factor-2 coarsening on all other levels. The results
show that aggressive coarsening in conjunction with factor-2 coarsening minimizes
overall compute time. Note that this coarsening strategy could be optimized further
by considering even more aggressive coarsening on the first time levels if the local
problem size on each processor is very large, and instead of using factor-2 coarsening
on all other levels we could gradually decrease the coarsening factor. Compared to
the results for factor-2 coarsening in Figure 5, we see much more gradual increase in
cost here, although still scaling with log(P); the increased problem size per processor
in this example leads to a higher ratio of computation vs. communication, yielding
better weak scaling. Comparing the three coarsening strategies for MGRIT F -cycles,
the time curves look similar to those in Figure 7.

1 16 256 4096
0

10

20

30

40

50

60

processors

tim
e

[s
ec

on
ds

]

m = 2
m = 16
m = 16 / 2

Fig. 7: Time to solve Implicit2D(T = π2/64) using the MGRIT V -cycle algorithm with
our heuristic choice for the accuracy of the spatial solves, various relaxation schemes,
and different coarsening strategies. The problem size per processor is about (27)2×28.
Solid lines are results for using FCF -relaxation on all time levels and dashed lines
represent runtimes for using F -relaxation on the finest grid and FCF -relaxation on
all coarse grids.

4.3. Parallel performance (2D space). The above results show that partic-
ular choices for various components of the MGRIT algorithm lead to a more effective
time-parallel method than other choices, but we would also like to know when it is
beneficial to use two-level (Parareal) or multi-level MGRIT and how much speedup we
can achieve over traditional space-parallel algorithms with sequential time stepping.

18 R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder

To answer these questions, we consider two studies. First, we compare two-level and
multi-level variants of MGRIT in a weak-scaling study up to 64K processors on Vul-
can. We then consider strong scaling for a set of MGRIT variants and a space-parallel
algorithm with sequential time stepping with an emphasis on comparing these time
integration approaches. We consider the model problem in two space dimensions with
implicit time discretization and choose the set of MGRIT variants based on the results
in Sections 4.1 and 4.2. We use the heuristic described in §3.3.2 for the accuracy of
the spatial solves and the factor-16/factor-2 aggressive coarsening strategy described
above.

Figure 8 shows the weak-scaling study of the MGRIT algorithm on Vulcan, the
Blue Gene/Q machine, for the problem with non-zero forcing. Here, we fix the tem-
poral coarsening factor to be 16, and use the heuristic described above to control the
solution of the spatial problems, varying only the two- vs. multi-level nature of the
algorithm and the use of F− vs. FCF− (or F − FCF−) relaxation. While, for small
processor counts, the two-grid method is slightly faster than the multigrid variants,
we see that the V-cycle algorithms offer much better parallel scalability, with weak
scaling efficiency of about 61% over 64K processors for the F −FCF−algorithm, and
about 75% for the FCF−relaxation algorithm. In contrast, the two-level variants
show strong growth in compute times already by 4096 processors. More scalable
two-level variants arise by increasing the temporal coarsening factor as the num-
ber of points-in-time increases (as discussed in §4.5 below). For the 20492 × 65,536
problem considered at 65,536 processors, increasing the coarsening factor from 16
to 256 reduces the two-level wall-clock time from 2005 and 2861 seconds for FCF−

and F−relaxation, respectively, to 313 and 324 seconds. However, these are still
markedly longer than the multilevel timings of 256 seconds for FCF−relaxation and
238 seconds for F − FCF−relaxation. Similar results are obtained for the problem
Implicit2D(T = π2/8)-F with δt = 8(∆x)2, although the use of F − FCF−relaxation
within the V-cycle algorithm requires only about 63% of the computing time that the
V-cycle algorithm with FCF−relaxation does.

1 16 256 4096 65,536
0

200

400

600

800

1000

processors

tim
e

[s
ec

on
ds

]

V−cycle, FCF
V−cycle, F−FCF
two−grid, FCF
two−grid, F

Fig. 8: Time to solve Implicit2D(T = π2/64)-F using two-grid and multilevel V-cycle
variants of the MGRIT algorithm on Vulcan, with coarsening by a factor of 16 in the
temporal direction and spatial problems solved using the heuristic described above.

The problem size per processor is about (27)2×28, with δt = (∆x)2. Note the scaling of
the time axis reflects the slower performance typical of the Blue Gene/Q architecture.

Figure 9 shows compute times for a strong-scaling study on a 1292×16,385 space-
time grid using a parallel algorithm with sequential time stepping and three MGRIT

Parallel time integration with multigrid 19

variants. For the time-stepping approach, we parallelize only in space, distributing
the spatial domain such that each processor contains approximately a square in space.
Since considering 16 processors for distributing the spatial domain minimizes the over-
all compute time when parallelizing only in space, for MGRIT, we parallelize over 16
processors in the spatial dimension, with increasing numbers of processors in the tem-
poral dimension. More precisely, denoting the number of processors used for temporal
parallelism by Pt, the space-time domain is distributed across 16Pt processors such
that each processor owns a space-time hypercube of approximately (25)2 × 16,384/Pt.
Considering a smaller number of processors, sequential time stepping is both faster
and uses less memory (for sequential time stepping, one has to store data from one
time step only, whereas for the MGRIT approach, a whole space-time subdomain, i.e.,
data from several time steps, needs to be stored). On a larger number of processors,
however, MGRIT is faster. The choice of which algorithm to use, therefore, depends
primarily on the available computational resources. More precisely, for this particular
problem, the crossover point at which it becomes beneficial to use the MGRIT algo-
rithm is at about 256 processors. Increasing the number of processors to 4096 results
in a speedup of up to a factor of 10 compared to sequential time stepping.

1 4 16 64 128 256 512 1024 2048 4096

2

4

8

16

32

64

128

processors

tim
e

[s
ec

on
ds

]

time stepping
V−cycle, FCF
V−cycle, F−FCF
F−cycle, F

Fig. 9: Time to solve Implicit2D(T = π2) on a 1292 × 16,385 space-time grid using
sequential time stepping and three MGRIT variants.

Table 5 details the parallel efficiencies and speedups, relative to sequential time-
stepping using 16 processors for spatial parallelism (which achieved the minimum
time-to-solution of the time-stepping runs), for the three MGRIT variants. The
parallel efficiencies for each MGRIT variant are measured relative to their runtime
as time-serial processes, using 16 processors for spatial parallelism. These results
show that each MGRIT variant obtains good parallel efficiency through Pt = 64,
with some degradation for Pt = 128 and Pt = 256. All three variants show some
speedup for Pt = 64, with F-cycles using F−relaxation showing best speedup there.
However, the V-cycle strategies show better efficiency for larger values of Pt, with
F −FCF−relaxation showing the best speedup with Pt = 256 (4096 total processors),
nearly ten times faster than the fastest time with sequential time-stepping.

4.4. Parallel performance (3D space). Comparing the two time integration
approaches for solving the model problem in three space dimensions with implicit time
discretization, the time curves look similar to those in Figure 9, but the crossover point
changes. Increasing the number of processors decreases the local problem size and,
consequently, increases the ratio of boundary to domain or, equivalently, decreases
the computation/communication ratio. For a particular computation/communication
ratio, we need a much larger number of processors when considering three space

20 R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder

Pt 1 2 4 8 16 32 64 128 256

V-cycle, FCF−relaxation

Efficiency 100.0 95.7 94.9 83.8 83.4 82.5 80.2 74.4 63.6

Speedup 0.04 0.08 0.16 0.28 0.56 1.11 2.15 3.98 6.81

V-cycle, F − FCF−relaxation

Efficiency 100.0 93.1 90.9 79.1 78.4 76.8 73.6 67.9 57.3

Speedup 0.07 0.12 0.24 0.41 0.82 1.60 3.07 5.66 9.55

F-cycle, F−relaxation

Efficiency 100.0 92.3 88.0 89.2 87.2 83.5 76.0 53.4 37.9

Speedup 0.08 0.14 0.26 0.54 1.05 2.01 3.65 5.13 7.28

Table 5: Strong scaling efficiency and speedup of MGRIT variants. For each method,
parallel efficiency is measured as T (1)/(Pt∗T (Pt)), where T (Pt) is the wall-clock time
required for solution on Pt processors. Speedup is measured relative to the wall-clock
time for sequential time-stepping with 16 processors used for spatial parallelism.

dimensions instead of two since local problem sizes are larger.

One possibility to benefit from the MGRIT approach at small scales is to consider
a smaller spatial problem size. Figure 10 shows the compute times for a strong-scaling
study on a 333 × 4097 space-time grid using a parallel algorithm with sequential time
stepping and three MGRIT variants. Analogously to the two-dimensional case, for the
sequential time stepping approach, the spatial domain is distributed evenly such that
each processor holds approximately a cube in space. Considering two processors for
each spatial dimension yields a reasonable spatial domain and results in close to min-
imum overall compute time when parallelizing only in space. Therefore, for MGRIT
the space-time domain is distributed across 8Pt processors such that each processor
owns a space-time hypercube of approximately (24)3 × 4096/Pt. The crossover point
for which it becomes beneficial to use MGRIT for this particular problem size is at
about 256 processors. Increasing the number of processors to 4096 results in a speedup
of up to a factor of six compared to sequential time stepping.

1 8 64 128 256 512 1024 2048 4096
2

4

8

16

32

64

processors

tim
e

[s
ec

on
ds

]

time stepping
V−cycle, FCF
V−cycle, F−FCF
F−cycle, F

Fig. 10: Time to solve Implicit3D(T = 4π2) on a 333 × 4097 space-time grid using
sequential time stepping and three MGRIT variants.

4.5. Parallel performance models. With current trends in computer archi-
tectures leading towards more processors, the MGRIT algorithm looks promising to
speed up computations by adding parallelism in time. In this section, we consider
three models to understand parallel performance of the algorithm. First, we con-
sider a simple computation, comparing the number of spatial time-stepping solves

Parallel time integration with multigrid 21

required for the MGRIT algorithm, comparing to the optimal count of Nt for serial
time-stepping. Since this potentially neglects serial bottlenecks in the algorithm, we
next consider a more detailed model of parallel performance for parareal and MGRIT
variants. Finally, we develop a full parallel performance model based on standard
communication and computation models, and investigate performance for two hypo-
thetical modern architectures.

4.5.1. Counting spatial solves. To gain insight about what level of parallelism
in time is needed to break even with time stepping, we can compare the number of
time-stepping routine calls for both time integration approaches. Recall that for im-
plicit time discretizations, these function calls correspond to spatial solves and thus,
are the dominant cost. Since sequential time stepping requires one spatial solve at
each time step, the number of time-stepping routine calls is Nt. For MGRIT V -cycles
with FCF -relaxation, we consider a hierarchy of time levels. For simplicity, we first
assume that we use the same accuracy for all spatial solves on all grid levels. Since re-
laxation and interpolation correspond to C-relaxation and F -relaxation, respectively,
the number of time-stepping routine calls in MGRIT taking the grid hierarchy into
account is approximately νt(2m/(m−1)+1)Nt, where m is the coarsening factor and
νt denotes the number of MGRIT iterations necessary to solve to a given accuracy.
Thus, for MGRIT to break even with sequential time stepping, we need about a fac-
tor of νt(2m/(m − 1) + 1) more processors to add parallelism in time. For the model
problem in two space dimensions with implicit time discretization considered in Table
1, for example, the number of MGRIT iterations for factor-2 coarsening is about 10
and thus, for this particular problem we need about 50 times as many processors for
MGRIT to break even with sequential time stepping.

If we consider a specific problem and, thus, a specific time integrator, Φ, and if we
choose a specific method for solving the spatial problems, we can better approximate
the level of parallelism needed to break even with time stepping. For the model
problem in three space dimensions with implicit time discretization, we assume that we
solve the spatial problems in parallel using spatial multigrid V -cycles with coarsening
by a factor of two in each dimension. Instead of counting time-stepping routine calls,
we now count the number of spatial V -cycles. If we fix an accuracy for the spatial
solves in the time stepping approach, the number of spatial V -cycle calls is given by
the number of time steps multiplied by the number of spatial V -cycle iterations, νx,ts,
necessary to solve to this accuracy. For the MGRIT approach, we assume that we
use a fixed number of spatial V -cycles for approximating each spatial solve within
relaxation and restriction on the coarse grids as well as within interpolation on all
grids. If we use a fixed coarsening factor, m, on all time levels, the number of spatial
V -cycle calls for all approximate spatial solves in the time grid hierarchy is about
2(m + 1)/(m− 1) multiplied by the number of time steps and the number of MGRIT
iterations, νt, necessary to solve to a given space-time accuracy. Within relaxation
and restriction on the finest grid, we consider solving the spatial problems to high
accuracy. The number of spatial V -cycle calls for these spatial solves is about 2Nt

multiplied by the number of MGRIT iterations and the number of spatial V -cycle
iterations, νx,MGRIT, necessary to solve to the high accuracy. Thus, the number of
spatial V -cycle calls for the two time integration approaches is given by

νx,tsNt (time stepping)

22 R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder

and

(νx,MGRIT +
m + 1

m − 1
)2νtNt (MGRIT V -cycle with FCF -relaxation).

For the problem in §4.4, we have νx,ts = 12, νt = 26, νx,MGRIT = 8, and m = 16
(under some simplifying assumptions such as assuming that we coarsen by a factor
of 16 on all levels). In this case, the number of spatial V -cycle calls is 12Nt for the
time-stepping approach and about 468Nt for the MGRIT approach. If we denote the
number of processors used for temporal parallelism in MGRIT by Pt, the number of
spatial V -cycle calls per processor is about 468Nt/Pt. Thus, the sequential cost of
12Nt spatial V -cycle calls in time stepping and the parallel cost of 468Nt/Pt spatial
V -cycles in MGRIT are equal for this problem if we use about 39 times as many
processors for adding parallelism in time in the MGRIT approach. The results in §4.4
show that for eight-way parallelism in space, the crossover point at which it becomes
beneficial to use MGRIT is at about 256 processors, corresponding to using 32 times as
many processors for parallelizing in time for each spatial subdomain. Thus, counting
the spatial V -cycle calls gives a good estimate for this problem. While this is a
substantial factor of extra work, the excellent strong scaling observed for the MGRIT
approach shows that it can be successfully amortized over many processors, leading
to real speedup.

4.5.2. Accounting for serial bottlenecks. While counting the number of
timestepping solves is an important indicator of the added cost of the MGRIT ap-
proach, it offers little insight into the true parallel performance of the algorithm. For
an MGRIT hierarchy with L levels, we can estimate the wall-clock time, measured in
units of spatial solves, required per iteration on levels 0 ≤ ℓ < L as

Tℓ = 2max(m,Nt/(mℓPt)),
where the factor of 2 bounds the cost of FCF -relaxation per temporal point, the first
term corresponds to serial integration in groups of m points within that relaxation,
and the second term corresponds to dividing work on Nt/mℓ temporal points over Pt

processors. On the coarsest level, we assume a serial solution of the problem with
Nt/mL temporal points.

For a two-grid method, such as parareal, L = 1, and we have a total cost of

TTG = νt (max(m,Nt/Pt) +Nt/m) ,
where we discard the factor of 2 in Tℓ above since F−relaxation alone is sufficient
for two-level convergence. Assuming νt is independent of m, the optimal choice of
m in the two-level context would make the coarse-grid problem as small as possible
without adding a sequential bottleneck on either the fine or coarse grids, giving m =
max(√Nt,Nt/Pt), and
(4.1) TTG = νt (max(√Nt,Nt/Pt) +max(√Nt, Pt)) .
This suggests the optimal choice of Pt in the two-grid context is Pt =

√
Nt, balancing

all terms and giving

TTG = 2νt
√
Nt.

Parallel time integration with multigrid 23

Note that when Pt =
√
Nt, then m =

√
Nt as well, suggesting the optimal two-grid

approach is to parallelize over
√
Nt processors in the temporal direction, coarsening

to a single point per processor on the coarse grid, just as in classical two-level domain
decomposition.

For a full multilevel method, with L = logmNt, the sequential phase of relaxation
becomes a parallel bottleneck on levels where m >Nt/(mℓPt), or ℓ > logm(Nt/Pt)−1.
Defining K = logm(Nt/Pt), the full multigrid time comes from summing Tℓ for 0 ≤ ℓ ≤
L, giving

TMG = νt (2K−1∑
ℓ=0

Nt/(mℓPt) + 2 L−1∑
ℓ=K

m + 1)
≤ νt (4Nt/Pt + 2m logm Pt + 1) .

Now, the optimal choice of m minimizes m logm Pt which, for any Pt occurs when
lnm = 1; for practical purposes, we round this to m = 3, giving

(4.2) TMG ≤ νt (4Nt/Pt + 6 log3 Pt + 1) .
Optimizing the choice of Pt in this expression gives Pt = (2 ln(3)/3)Nt, giving the
bound

TMG ≤ νt (6 log3 ((2 ln(3)/3)Nt) + 6/ ln(3) + 1) ≈ 6νt log3Nt.

Comparing (4.1) and (4.2), using the optimal coarsening factors for both two-grid
and multi-grid variants, we see that we can make a direct comparison between work
on the finest grid(s), where we expect the total work term, Nt/Pt, to dominate, and
the coarsest grids, where sequential bottlenecks develop. If Nt/Pt <

√
Nt, then the

finest-scale work is comparable, with the extra relaxation and levels in the MGRIT
hierarchy contributing no more than a factor of 4 more work than the two-grid method
with F -relaxation. On coarse scales, however, the sequential solve in the two-level
scheme requires at least Pt work per iteration, while only 6 log3 Pt work is required
per iteration in the multilevel approach. For even moderate values of Pt, this clearly
benefits the multilevel variants. If we further assume enough parallel resources to
optimally parallelize the two approaches, then the multilevel schemes can effectively
use larger numbers of processors, and the ultimate wall-clock time bound grows like
only log3Nt for the multilevel scheme, compared to

√
Nt for the two-level approach.

If parallel resources are limited, then the two-level method may be faster, such as in
the case where Pt =

√
Nt, where TMG ≈ 2TTG.

4.5.3. Parallel communication and computation model. The above argu-
ments allow us to estimate the level of parallelism in time needed to break even with
time stepping or a two-grid approach, but neglect important details such as message
latency and network bandwidth. To give more precise estimates, we now develop
parallel performance models based on the standard communication and computation
models

(4.3) Tcomm = α + nβ, Tcomp = nγ,

where α and β represent communication costs and γ is computation cost on a given
machine. The numbers in [13, Table 2] can be used as the basis for choosing two

24 R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder

parameter sets characterizing modern machines: a “computation dominant” set con-
sisting of the parameters

(4.4) α = 1 µs, β = 10 ns/double, γ = 8 ns/flop,

and a “communication dominant” set defined by

(4.5) α = 1 µs, β = 0.74 ns/double, γ = 0.15 ns/flop.

The ratios α/β and α/γ are assumed to be “small” in the computation dominant set
and “large” in the communication dominant set. To define the parameter sets (4.4)
and (4.5), we have set α = 1 µs and chosen β and γ such that the ratios α/β and α/γ
are equal to the minimum or maximum ratios from [13, Table 2], respectively.

Based on the two parameter sets (4.4) and (4.5), we compare the two time integra-
tion approaches. Analogously to the numerical experiments in §4.4, for the sequential
time-stepping approach, we assume that the spatial domain is equally distributed
such that each processor holds approximately a cube in space, and that the number
of processors is increased only up to the point at which the spatial subdomain consists
of about 23 points per processor. We consider a domain refinement of the problem in
§4.4 meaning that instead of a space-time grid of size 333 × 4097 we assume a space-
time grid of size 653 × 16,385. Assuming that nx = 2

4 is a reasonable local problem
size in each space dimension, we assume that the space-time domain is distributed
across 64Pt processors such that each processor owns a space-time hypercube of about(24)3×16,384/Pt. Furthermore, we assume that we use a fixed coarsening factor on all
levels that depends on the local number of time points on the finest grid as follows: if
16,384/Pt ≥ 16, we assume coarsening by a factor of 16, otherwise we consider factor-2
coarsening.

Figure 11 shows the predicted time to solve Implicit3D(T = 4π2) on a 653×16,385
space-time grid using sequential time stepping parallelized only in space and the pre-
dicted time to solution for applying MGRIT as functions of the number of processors
used for the computations. The left plot shows the expected behavior based on the
computation dominant parameters (4.4), and the right plot presents the expected be-
havior based on the communication dominant parameters (4.5). The time curves for
both parameter sets show similar trends to those in numerical experiments, but as
Figure 11 demonstrates, the expected crossover point and expected speedup depend
on the parameter choices and, hence, the type of machine being used. In the com-
putation dominant regime, the model predicts a speedup of up to a factor of about
three, whereas in the communication dominant regime it is up to a factor of about 27.
This result is attractive since, on future architectures, we expect the parameters to
be most likely in the more communication dominant regime. Furthermore, comparing
model predictions to numerical results for the problem in §4.4, the communication
dominant model corresponds better to numerical results than the computation dom-
inant model. We note that since the MGRIT approach relies on extra computation
over time-stepping that is amortized in parallel, it is very sensitive to slow network
performance relative to the computational work. Large increases in latency or de-
creases in bandwidth can certainly lead to situations where this work can no longer
be effectively amortized, and the approach offers less value in these limits.

5. Conclusions. With current trends in computer architectures leading towards
systems with more, but not faster, processors, faster compute speeds must come from
increased concurrency. Motivated by this challenge, a non-intrusive, optimal-scaling,

Parallel time integration with multigrid 25

1 8 64 512 4096 32,768 262,144
10

0

10
1

10
2

10
3

10
4

10
5

tim
e

[s
ec

on
ds

]

processors

time stepping
V−cycle, FCF

1 8 64 512 4096 32,768 262,144
10

−1

10
0

10
1

10
2

10
3

tim
e

[s
ec

on
ds

]

processors

time stepping
V−cycle, FCF

Fig. 11: Predicted time to solve Implicit3D(T = 4π2) on a 653 × 16,385 space-time
grid using sequential time-stepping or MGRIT. At left, expected behavior based on
the computation dominant parameters (4.4) and at right, expected behavior based on
the communication dominant parameters (4.5).

time-parallel method is proposed. Being a non-intrusive approach which only uses
an existing time propagator, this multigrid-reduction-in-time algorithm easily allows
one to exploit substantially more computational resources than standard sequential
time stepping. This is particularly important when moving to exascale, but it also
enables benefits on smaller scales. For example, for problems that involve a large
number of time steps, effective speedup is limited when allowing only spatial paral-
lelism. Numerical results show that already on modern machines adding parallelism in
time can sometimes significantly speedup computations when sufficient computational
resources are available.

The parareal time integration method is equivalent to an optimal two-level vari-
ant of our MGR-based algorithm, MGRIT. However, the obvious generalization of
parareal to multiple levels does not produce an optimal method. The MGR view-
point makes it possible to see that replacing F -relaxation in the two-level parareal
method with FCF -relaxation and applying the resulting method recursively produces
an optimal multilevel algorithm.

For explicit time discretization schemes, stability issues on coarse grids can be
circumvented while preserving optimality and non-intrusiveness by using an implicit
discretization on coarse grids. However, a more general approach to time paralleliza-
tion is to consider the space and time variables together by thinking of time as just
another dimension of the problem. The drawback of space-time multigrid is that it
will be more intrusive compared to MGRIT. On the other hand, space-time methods
should have better performance properties and smaller memory requirements.

In this paper, only problems that yield constant-coefficient one-step time dis-
cretization methods are considered meaning that the time integration operator Φi(⋅)
in (2.2) corresponds to a matrix-vector product with a fixed matrix, Φi(ui−1) = Φui−1.
Future work includes considering methods for variable-coefficient problems such that
Φi(ui−1) = Φiui−1. The generalization to this case is straightforward, but coefficient
variability often creates additional difficulties for multigrid solvers. We will investigate
the sensitivity of our methods to variations in Φi.

If the problem (2.1) is nonlinear, MGR ideas can be generalized to the full ap-
proximation storage (FAS) setting [6]. Future work also includes extending the MGR
approach to the nonlinear setting. In fact, the parallel implementation of MGRIT is
already based on the FAS approach. One interesting problem area we will consider
is moving and/or adaptive meshes for which the F -cycle variant of MGRIT should
prove useful.

Finally, future work includes broadening the applicability of MGRIT to hyperbolic
problems. To this end, we have explored the simple linear advection equation in one-

26 R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder

dimensional space cross time. Here, initial results are promising when running a
study analogous to Table 1, where we observe slowly growing iteration counts for F -
cycles and FCF -relaxation. Future work will focus on scalability and more difficult
problems, e.g., shocks.

REFERENCES

[1] hypre: High performance preconditioners. http://www.llnl.gov/casc/hypre/.
[2] P. Amodio and L. Brugnano, Parallel solution in time of ODEs: some achievements and

perspectives, Appl. Numer. Math., 59 (2009), pp. 424–435.
[3] S. F. Ashby and R. D. Falgout, A parallel multigrid preconditioned conjugate gradient al-

gorithm for groundwater flow simulations, Nuclear Science and Engineering, 124 (1996),
pp. 145–159. UCRL-JC-122359.

[4] R. Bank and K. Smith, The incomplete factorization multigraph algorithm, SIAM J. Sci.
Comput., 20 (1999), pp. 1349–1364.

[5] , An algebraic multilevel multigraph algorithm, SIAM J. Sci. Comput., 23 (2002),
pp. 1572–1592.

[6] A. Brandt, Multi–level adaptive solutions to boundary–value problems, Math. Comp., 31
(1977), pp. 333–390.

[7] J. Bulin, Large-scale time parallelization for molecular dynamics problems, Master’s thesis,
Royal Institute of Technology, 2013.

[8] A. Christlieb, R. Haynes, and B. Ong, A parallel space-time algorithm, SIAM J. Sci. Com-
put., 34 (2012), pp. C233–C248.

[9] A. J. Christlieb, C. B. Macdonald, and B. W. Ong, Parallel high-order integrators, SIAM
J. Sci. Comput., 32 (2010), pp. 818–835.

[10] X. Dai and Y. Maday, Stable parareal in time method for first- and second-order hyperbolic
systems, SIAM J. Sci. Comput., 35 (2013), pp. A52–A78.

[11] R. D. Falgout and J. E. Jones, Multigrid on massively parallel architectures, in Multigrid
Methods VI, E. Dick, K. Riemslagh, and J. Vierendeels, eds., vol. 14 of Lecture Notes
in Computational Science and Engineering, Springer-Verlag, 2000, pp. 101–107. Proc. of
the Sixth European Multigrid Conference held in Gent, Belgium, September 27-30, 1999.
UCRL-JC-133948.

[12] H. Foerster, K. Stüben, and U. Trottenberg, Nonstandard multigrid techniques using
checkered relaxation and intermediate grids, in Elliptic Problem Solvers, M. Schulz, ed.,
Academic, New York, 1981, pp. 285–300.

[13] H. Gahvari, A. Baker, M. Schulz, U. M. Yang, K. Jordan, and W. Gropp, Modeling the
Performance of an Algebraic Multigrid Cycle on HPC Platforms, in 25th ACM Interna-
tional Conference on Supercomputing, Tucson, AZ, 2011.

[14] M. J. Gander and S. Güttel, PARAEXP: a parallel integrator for linear initial-value prob-
lems, SIAM J. Sci. Comput., 35 (2013), pp. C123–C142.

[15] M. J. Gander and E. Hairer, Nonlinear convergence analysis for the parareal algorithm, in
Domain Decomposition Methods in Science and Engineering XVII, U. Langer, M. Discac-
ciati, D. E. Keyes, O. B. Widlund, and W. Zulehner, eds., vol. 60 of Lecture Notes in
Computational Science and Engineering, Springer Berlin Heidelberg, 2008, pp. 193–200.

[16] M. J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration
method, SIAM J. Sci. Comput., 29 (2007), pp. 556–578.

[17] I. Garrido, B. Lee, G. E. Fladmark, and M. S. Espedal, Convergent iterative schemes for
time parallelization, Math. Comp., 75 (2006), pp. 1403–1428.

[18] C. W. Gear, Parallel methods for ordinary differential equations, Calcolo, 25 (1988), pp. 1–20.
[19] W. Hackbusch, Parabolic multigrid methods, in Computing methods in applied sciences and

engineering, VI (Versailles, 1983), North-Holland, Amsterdam, 1984, pp. 189–197.
[20] G. Horton and R. Knirsch, A space-time multigrid method for parabolic partial differential

equations, Parallel Computing, 18 (1992), pp. 21–29.
[21] G. Horton and S. Vandewalle, A space-time multigrid method for parabolic partial differ-

ential equations, SIAM J. Sci. Comput., 16 (1995), pp. 848–864.
[22] K. R. Jackson, A survey of parallel numerical methods for initial value problems for ordinary

differential equations, IEEE Trans. Magnetics, 27 (1991), pp. 3792–3797.
[23] D. Kamowitz and S. V. Parter, On MGR[ν] multigrid methods, SIAM J. Numer. Anal., 24

(1987), pp. 366–381.
[24] Z. Li, Y. Saad, and M. Sosonkina, pARMS: A parallel version of the algebraic recursive

Parallel time integration with multigrid 27

multilevel solver, Numer. Linear Algebra Appl., 10 (2003), pp. 485–509.
[25] J. L. Lions, Y. Maday, and G. Turinici, Résolution d’EDP par un schéma en temps pararéel,

C.R.Acad Sci. Paris Sér. I Math, 332 (2001), pp. 661–668.
[26] S. MacLachlan, T. Manteuffel, and S. McCormick, Adaptive reduction-based AMG, Nu-

mer. Linear Algebra Appl., 13 (2006), pp. 599–620.
[27] S. MacLachlan and Y. Saad, Greedy coarsening strategies for nonsymmetric problems, SIAM

J. Sci. Comput., 29 (2007), pp. 2115–2143.
[28] Y. Maday, The “parareal in time” algorithm, in Sub-Structuring Techniques and Domain

Decomposition Methods, F. Magoulès, ed., Computational Science, Engineering & Tech-
nology, Saxe-Coburg Publications, Stirlingshire, UK, 2010, ch. 2, pp. 19–44.

[29] C. Mense and R. Nabben, On algebraic multi-level methods for non-symmetric systems—
comparison results, Linear Algebra Appl., 429 (2008), pp. 2567–2588.

[30] , On algebraic multilevel methods for non-symmetric systems—convergence results, Elec-
tron. Trans. Numer. Anal., 30 (2008), pp. 323–345.

[31] M. L. Minion, A hybrid parareal spectral deferred corrections method, Comm. App. Math. and
Comp. Sci., 5 (2010), pp. 265–301.

[32] M. L. Minion and S. A. Williams, Parareal and spectral deferred corrections, in Numerical
Analysis and Applied Mathematics, T. E. Simos, ed., no. 1048 in AIP Conference Proceed-
ings, AIP, 2008, pp. 388â“–391.

[33] J. Nievergelt, Parallel methods for integrating ordinary differential equations, Comm. ACM,
7 (1964), pp. 731–733.

[34] Y. Notay, Algebraic multigrid and algebraic multilevel methods: a theoretical comparison,
Numer. Linear Algebra Appl., 12 (2005), pp. 419–451.

[35] S. V. Parter, On an estimate for the three-grid MGR multigrid method, SIAM J. Numer.
Anal., 24 (1987), pp. 1032–1045.

[36] M. Ries and U. Trottenberg, MGR-ein blitzschneller elliptischer löser, Tech. Rep. Preprint
277 SFB 72, Universität Bonn, 1979.

[37] M. Ries, U. Trottenberg, and G. Winter, A note on MGR methods, Linear Algebra Appl.,
49 (1983), pp. 1–26.

[38] D. Ruprecht and R. Krause, Explicit parallel-in-time integration of a linear acoustic-
advection system, Comput. & Fluids, 59 (2012), pp. 72–83.

[39] Y. Saad and B. Suchomel, ARMS: an algebraic recursive multilevel solver for general sparse
linear systems, Numer. Linear Algebra Appl., 9 (2002), pp. 359–378.

[40] R. Speck, D. Ruprecht, M. Emmett, M. Bolten, and R. Krause, A space-time parallel
solver for the three-dimensional heat equation, in Parallel Computing: Accelerating Com-
putational Science and Engineering (CSE), M. Bader, A. Bode, H.-J. Bungartz, M. Gerndt,
G. Joubert, and F. Peters, eds., vol. 25 of Advances in Parallel Computing, IOS Press, 2014,
pp. 263–272.

[41] R. Speck, D. Ruprecht, M. Emmett, M. Minion, M. Bolten, and R. Krause, A multi-level
spectral deferred correction method, arXiv preprint, (2013), pp. 1–30.

[42] H. D. Sterck, T. A. Manteuffel, S. F. McCormick, and L. Olson, Least-squares finite
element methods and algebraic multigrid solvers for linear hyperbolic PDEs, SIAM J. Sci.
Comput., 26 (2004), pp. 31–54.

[43] T. Weinzierl and T. Köppl, A geometric space-time multigrid algorithm for the heat equation,
Numer. Math. Theory Methods Appl., 5 (2012), pp. 110–130.

[44] D. E. Womble, A time-stepping algorithm for parallel computers, SIAM J. Stat. Comput., 11
(1990), pp. 824–837.

